$$
\left[\mathrm{Zn}\left(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3}\right)\right]_{2}
$$

$\mathrm{N} 22-\mathrm{Zn}-\mathrm{O} 3^{\mathrm{i}}$	$103.24(13)$	$\mathrm{C} 181-\mathrm{C} 182-\mathrm{C} 183$	$115.1(4)$
$\mathrm{N} 21-\mathrm{Zn}-\mathrm{O}^{\mathrm{i}}$	$91.66(13)$	$\mathrm{O} 3-\mathrm{C} 183-\mathrm{C} 20$	$121.1(4)$
$\mathrm{N} 24-\mathrm{Zn}-\mathrm{O}^{\mathrm{i}}$	$88.67(13)$	$\mathrm{O} 3-\mathrm{C} 183-\mathrm{C} 182$	$118.4(4)$
$\mathrm{C} 1-\mathrm{N} 21-\mathrm{Zn}$	$127.0(3)$	$\mathrm{C} 20-\mathrm{C} 183-\mathrm{C} 182$	$120.5(4)$
$\mathrm{C} 4-\mathrm{N} 21-\mathrm{Zn}$	$125.4(3)$	$\mathrm{N} 24-\mathrm{C} 19-\mathrm{C} 20$	$127.4(4)$
$\mathrm{C} 9-\mathrm{N} 22-\mathrm{Zn}$	$125.7(3)$	$\mathrm{N} 24-\mathrm{C} 19-\mathrm{C} 18$	$110.3(4)$
$\mathrm{C} 6-\mathrm{N} 22-\mathrm{Zn}$	$127.6(3)$	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18$	$122.2(4)$
$\mathrm{C} 14-\mathrm{N} 23-\mathrm{Zn}$	$126.8(3)$	$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 1$	$124.7(4)$
$\mathrm{C} 11-\mathrm{N} 23-\mathrm{Zn}$	$126.3(3)$	$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 183$	$114.6(4)$
$\mathrm{C} 19-\mathrm{N} 24-\mathrm{C} 16$	$109.3(3)$	$\mathrm{C} 1-\mathrm{C} 20-\mathrm{C} 183$	$120.3(4)$
$\mathrm{C} 19-\mathrm{N} 24-\mathrm{Zn}$	$124.1(3)$	$\mathrm{C} 21-\mathrm{O} 2-\mathrm{C} 22$	$115.0(4)$
$\mathrm{C} 16-\mathrm{N} 24-\mathrm{Zn}$	$125.2(3)$	$\mathrm{C} 183-\mathrm{O} 3-\mathrm{Zn}^{\mathrm{i}}$	$124.3(3)$
$\mathrm{N} 24-\mathrm{C} 16-\mathrm{C} 15$	$125.4(4)$		
Symmetry code: (i) $1-x, 2-y, 1-z$.			
H atoms were placed in calculated positions and refined using			

paced in calculated positions and refined using a riding model.
Data collection: P3/P4-PC Diffractometer Program (Siemens, 1991). Cell refinement: P3/P4-PC Diffractometer Program. Data reduction: XDISK in SHELXTL-Plus (Sheldrick, 1995). Program(s) used to solve structure: XS93 in SHELXTLPlus. Program(s) used to refine structure: XL93 in SHELXTLPlus. Molecular graphics: XP in SHELXTL-Plus. Software used to prepare material for publication: XCIF in SHELXTLPlus.

This work was supported by grants from the Fonds der Chemischen Industrie (MOS) and the National Science Foundation (KMS; CHE-96-23117).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1192). Services for accessing these data are described at the back of the journal.

References

Abraham, R. J., Medforth, C. J., Mansfield, K. E., Simpson, D. J. \& Smith, K. M. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1365-1370. Abraham, R. J. \& Rowan, A. E. (1991). Chlorophylls, edited by H. Scheer, pp. 797-834. Boca Raton: CRC Press.
Färber, G., Keller, W., Kratky, C., Jaun, B., Pflatz, A., Spinner, C., Kobelt, A. \& Eschenmoser, A. (1991). Helv. Chim. Acta, 74, 697716.

Henrick, K., Owston, P. G., Peters, R., Tasker, P. A. \& Dell, A. (1980). Inorg. Chim. Acta, 45, L161-Ll63.

Hope, H. (1994). Prog. Inorg. Chem. 41, 1-13.
Parkin, S. R., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Pelter, A., Ballantine, J. A., Murray-Rust, P., Ferrito, V. \& Psaila, A. F. (1978). Tetrahedron Lett. 21, 1881-1884.

Renner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H.-K., Simpson, D. J., Smith, K. M. \& Fajer, J. (1991). J. Am. Chem. Soc. 113, 6891-6898.
Scheidt, W. R. \& Lee, Y.-J. (1987). Struct. Bonding (Berlin), 64, 1-70.
Senge, M. O. \& Kurreck, H. (1997). In preparation.
Senge, M. O. \& Smith, K. M. (1994). J. Chem. Soc. Chem. Commun. pp. 923-924.
Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Smith, K. M. \& Simpson, D. J. (1987). J. Am. Chem. Soc. 109, 63266333.

Staab, H. A., Krieger, C., Anders, C. \& Rückemann, A. (1994). Chem. Ber. 127, 231-236.

Acta Cryst. (1997). C53, 1024-1027

Tetrahydrofuran Adducts of a Chlorobismuthate(III) Anion and Antimony Triiodide

Siân C. James, Nicholas C. Norman, A. Guy Orpen and Michael J. Quayle
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, England. E-mail: guy.orpen@bris.ac.uk

(Received II February 1997; accepted I2 March 1997)

Abstract

Tetrahydrofuran (thf) adducts of a chlorobismuthate(III) anion and of antimony triiodide have been prepared and characterized by X-ray crystallography. The former compound, bis[tetrakis(tetrahydrofuran- O)lithium(I)] di- μ-chloro-bis[trichloro(tetrahydrofuran- O)bismuthate(III)], $\left[\mathrm{Li}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{4}\right]_{2}\left[\mathrm{Bi}_{2} \mathrm{Cl}_{8}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]$, contains centrosymmetric edge-shared bi-octahedral dianions with the formula $\left[\mathrm{Bi}_{2} \mathrm{Cl}_{6}(\mathrm{thf})_{2}(\mu-\mathrm{Cl})_{2}\right]^{2-}$ in which the thf ligands occupy terminal sites at 90° to the $\mathrm{Bi}_{2}(\mu-\mathrm{Cl})_{2}$ plane; the cations are $\left[\mathrm{Li}(\mathrm{thf})_{4}\right]^{+}$. The latter structure, triiodo(tetrahydrofuran- O) antimony(III), [$\mathrm{SbI}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$], comprises a polymeric arrangement of SbI_{3} (thf) units, the antimony centres being bridged alternately by pairs of I atoms and pairs of thf ligands.

Comment

Antimony and bismuth trihalides have an extensive coordination chemistry as a result of the Lewis acidity of the group 15 element centre, and a number of complexes are known, mostly for bismuth, in which the number of coordinated ligands ranges from one to three per element centre (Carmalt et al., 1996, and references therein). One particular class of element trihalide complexes has thf as the ligand. Previously characterized examples in this class are fac- $\left[\mathrm{BiCl}_{3}(\mathrm{thf})_{3}\right]$ (Eveland \& Whitmire, 1996), fac- $\left[\mathrm{BiBr}_{3}\left(\mathrm{thf}_{3}\right]\right.$ and $\left[\mathrm{BiCl}_{3}(\mathrm{thf})_{2}\right]$ (Carmalt et al., 1996). The first two complexes are mononuclear with octahedrally coordinated bismuth centres around which the thf ligands and halides both adopt fac configurations. The compound $\left[\mathrm{BiCl}_{3}(\mathrm{thf})_{2}\right]$ has a polymeric structure in the solid state in which each bismuth centre resides in a seven-coordinate pentagonal bipyramidal coordination environment with one axial and one equatorial thf, one axial Cl atom which is terminal, and four equatorial bridging Cl atoms, two with short $\mathrm{Bi}-\mathrm{Cl}$ bonds and two with rather longer $\mathrm{Bi}-$ Cl distances. A related group of compounds consists of iodobismuthate(III) anions to which thf ligands are coordinated, examples of which include the dianions
$\left[\mathrm{Bi}_{4} \mathrm{I}_{14}\left(\mathrm{thf}_{2}\right]^{2-}\right.$ (Krautscheid, 1994a), $\left[\mathrm{Bi}_{4} \mathrm{I}_{14}\left(\mathrm{thf}_{4}\right]^{2-}\right.$ and $\left[\mathrm{Bi}_{2} \mathrm{I}_{8}(\text { (thf })_{2}\right]^{2-}$ (Krautscheid, 1994b). In no case is there any significant stereochemical activity associated with the $\mathrm{Bi}^{\mathrm{II}}$ lone pair.

(1)

(2)

The compound $\left[\mathrm{Li}(\mathrm{thf})_{4}\right]_{2}\left[\mathrm{Bi}_{2} \mathrm{Cl}_{6}\left(\mathrm{thf}_{2}\left(\mu-\mathrm{Cl}_{2}\right]\right.\right.$, (1), comprises separated ions with no short interionic contacts. The dianion (Fig. 1) has a crystallographically centrosymmetric edge-shared bi-octahedral structure in which the thf ligands occupy terminal sites perpendicular to the $\mathrm{Bi}_{2}(\mu-\mathrm{Cl})_{2}$ plane, the $\mathrm{Bi}-\mathrm{O}$ distance $[2.588$ (7) \AA] being comparable with those in $\left[\mathrm{BiCl}_{3}\left(\mathrm{thf}_{3}\right]\right.$ [2.63 (2)-2.67 (2) \AA; Eveland \& Whitmire, 1996] and [$\left.\mathrm{BiCl}_{3}(\mathrm{thf})_{2}\right]$ [2.551 (4)-2.622 (12) \AA; Carmalt et al., 1996]. Of the $\mathrm{Bi}-\mathrm{Cl}$ distances, the one to the terminal Cl atom (Cl 1) trans to the thf ligand is the
shortest [2.558 (3) \AA]. The other two terminal $\mathrm{Bi}-\mathrm{Cl}$ bonds are slightly longer [$\mathrm{Bi} 1-\mathrm{Cl} 32.565$ (3) and $\mathrm{Bil}-$ Cl4 2.576 (3) Å], both being trans to bridging Cl atoms, the $\mathrm{Bi}-\mathrm{Cl}$ distances for which are significantly longer than the terminal bonds as expected [$\mathrm{Bil}-\mathrm{Cl} 22.896$ (3) and $\mathrm{Bil}-\mathrm{Cl}^{\mathrm{i}} 2.924(3) \AA$; see Table 1 for symmetry code], although not very different from each other, resulting in a fairly symmetrical $\mathrm{Bi}_{2}(\mu-\mathrm{Cl})_{2}$ unit. None of the interbond angles deviate significantly ($>10^{\circ}$) from idealized octahedral angles. The $\left[\mathrm{Li}(\mathrm{thf})_{4}\right]^{+}$cation has an orthodox geometry (Krautscheid, 1994a).

Fig. 1. A view of the $\left[\mathrm{Bi}_{2} \mathrm{Cl}_{6}\left(\mathrm{thf}_{2}\left(\mu-\mathrm{Cl}_{2}\right]^{2-}\right.\right.$ dianion in $\left[\mathrm{Li}(\mathrm{thf})_{4}\right]_{2}\left[\mathrm{Bi}_{2} \mathrm{Cl}_{6}(\mathrm{thf})_{2}(\mu-\mathrm{Cl})_{2}\right]$ showing the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level.

Fig. 2. A view of part of the polymeric structure of $\mathrm{SbI}_{3}($ thf $)$ showing the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level.

The compound $\left[\mathrm{SbI}_{3}(\mathrm{thf})\right]$, (2), is the first structurally characterized example of a thf adduct of an antimony halide and is quite different from any previously described neutral bismuth halide thf adducts. The structure (Fig. 2) comprises a polymeric arrangement of SbI_{3} (thf) units, the antimony centres being bridged alternately by pairs of I atoms and pairs of thf ligands such that each Sb atom has an octahedral coordination geometry. With regard to the antimony-iodine bonds, there are three short bonds [Sb1-I1 2.7610 (5), Sbl -I2 2.7574 (5) and Sb1-I3 $2.7974(5) \AA$ A] which have a mutually fac arrangement, and a fourth much longer bond [Sb1-I3 ${ }^{\mathrm{ii}} 3.6842$ (5) Å; see Table 2 for symmetry code] which lies trans to I2. The I3 atoms are bridging and, as can be seen from the $\mathrm{Sb}-\mathrm{I}$ distances, the bridging interaction is highly asymmetric, although its effect on the Sbl-I3 bond is apparent in that this bond is slightly longer than the $\mathrm{Sbl}-\mathrm{Il}$ and $\mathrm{Sb} 1-\mathrm{I} 2$ bonds. The thf ligands bridge the antimony centres more symmetrically [Sbl-O1 2.854 (4) and Sbl-O1 3.020 (4) \AA; see Table 2 for symmetry code], although with $\mathrm{Sb}-\mathrm{O}$ bonds which are quite long (cf. a terminal $\mathrm{Sb}-\mathrm{O}$ distance of $2.236 \AA$ in $\left[\mathrm{SbCl}(\mathrm{thf})\left\{\mathrm{Cr}(\mathrm{CO})_{5}\right\}_{2}\right]$; Sigwarth, Weber, Zsolnai \& Huttner, 1985). Furthermore, this compound is unusual in having bridging thf ligands, since such a bridging role is very rare, the only other example of which we are aware being $\left[\mathrm{Ti}_{2} \mathrm{~F}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mu \text { - } \mathrm{F})_{2}(\mu-\right.$ thf)] (Herzog et al., 1994). The $M-\mathrm{O}-M$ angle in (2) is notably larger [$95.2(2)^{\circ}$] than in the titanium complex [Ti-O-Ti $80.3(6)^{\circ}$]. None of the interbond angles at antimony deviate significantly ($>10^{\circ}$) from idealized octahedral angles indicating little stereochemical activity of the $\mathrm{Sb}^{\text {II }}$ lone pair in (2). A similar conclusion holds for (1).

Experimental

Reactions were carried out using standard Schlenk and dry box techniques under an atmosphere of nitrogen or argon gas. Compound (1) was obtained as a side product from the reaction between $\mathrm{BiCl}_{3}(0.500 \mathrm{~g}, 1.59 \mathrm{mmol})$ in THF, and lithium 2,6-dichlorophenoxide prepared from 2,6-dichlorophenol $(0.772 \mathrm{~g}, 0.00476 \mathrm{~mol})$ and ${ }^{n} \mathrm{BuLi}(3 \mathrm{ml}$ of 1.6 M solution in n-hexanes) in $\mathrm{Et}_{2} \mathrm{O}$. After filtration, crystallization yielded white needle-like crystals. Orange crystals of (2) were obtained as a side product of the co-crystallization of SbI_{3} (0.392 g) and TCNE (tetracyanoethene) (0.1 g) in a minimum of THF layered with hexane. Crystals coated with a hydrocarbon oil were mounted on a glass fibre with silicone grease under an argon atmosphere.

Compound (1)

Crystal data
$\left[\mathrm{Li}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{4}\right]_{2}\left[\mathrm{Bi}_{2} \mathrm{Cl}_{8}-\right.$
$\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}$]
$M_{r}=718.24$
Monoclinic
$P 2_{1} / n$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 72 reflections
$\theta=5-50^{\circ}$
$a=10.598$ (2) \AA
$\mu=6.535 \mathrm{~mm}^{-1}$
$b=24.577$ (3) \AA
$c=11.378$ (4) \AA
$\beta=104.24(2)^{\circ}$
$V=2872.7(12) \AA^{3}$
$Z=4$
$D_{x}=1.661 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART area detector diffractometer
ω rotation with narrow frame scans
Absorption correction:
SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.044, T_{\text {max }}=0.096$
13321 measured reflections
$T=173$ (2) K
Block
$0.3 \times 0.3 \times 0.2 \mathrm{~mm}$
Clear

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }=-0.015$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$\Delta \rho_{\max }=1.79 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.086$
$S=0.854$
5039 reflections
280 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.021 P)^{2}\right]$
where $P=\left[\max \left(F_{o}^{2}, 0\right)\right.$ $\left.+2 F_{c}^{2}\right] / 3$

5039 independent reflections
2685 reflections with

$$
\begin{gathered}
I>2 \sigma(I) \\
R_{\text {int }}=0.129 \\
\theta_{\max }=25.02^{\circ} \\
h=-12 \rightarrow 11 \\
k=-19 \rightarrow 29 \\
l=-13 \rightarrow 13
\end{gathered}
$$

$\left(0.9 \AA \AA\right.$ from $\left.\mathrm{Bli}^{\circ}\right)$
$\Delta \rho_{\text {min }}=-2.07 \mathrm{e}^{-3}$ ($0.36 \AA$ from Bil)
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (1)

Bil-Cll	2.558 (3)	Bil-Cl2'	2.924 (3)
$\mathrm{Bi} 1-\mathrm{Cl} 3$	2.565 (3)	Lil-03	1.90 (2)
$\mathrm{Bil}-\mathrm{Cl} 4$	2.576 (3)	Lil-O4	1.93 (2)
Bil-O5	2.588 (7)	$\mathrm{Li} 1-\mathrm{O} 2$	1.91 (2)
$\mathrm{Bil}-\mathrm{Cl} 2$	2.896 (3)	Lil-O1	1.94 (2)
Cll-Bil-Cl3	91.67 (9)	$\mathrm{Cl} 4-\mathrm{Bil}-\mathrm{Cl} 2$	170.08 (8)
Cl1-Bil-Cl4	94.52 (9)	O5- $\mathrm{Bi} 1-\mathrm{Cl} 2$	87.6 (2)
$\mathrm{Cl} 3-\mathrm{Bil}-\mathrm{Cl} 4$	92.51 (9)	$\mathrm{Cl} 13-\mathrm{Bil}-\mathrm{Cl2}^{\prime}$	96.42 (9)
$\mathrm{ClI}-\mathrm{BiI}-\mathrm{O} 5$	175.7 (2)	$\mathrm{Cl} 3-\mathrm{Bil}-\mathrm{Cl}^{\prime}$	170.29 (9)
$\mathrm{Cl} 3-\mathrm{Bil}-\mathrm{O} 5$	84.2 (2)	$\mathrm{Cl} 4-\mathrm{Bil}-\mathrm{Cl}_{2}{ }^{1}$	92.20 (8)
C14-- $\mathrm{Bi} 1-\mathrm{O} 5$	84.7 (2)	O5- $\mathrm{Bil}^{-} \mathrm{Cl} 2^{\prime}$	87.8 (2)
$\mathrm{Cll}-\mathrm{Bil}-\mathrm{Cl} 2$	93.59 (9)	$\mathrm{Cl} 2-\mathrm{Bil}-\mathrm{Cl}^{\prime}$	81.22 (9)
$\mathrm{Cl} 3-\mathrm{Bil}-\mathrm{Cl} 2$	92.96 (9)	$\mathrm{Bil}-\mathrm{Cl} 2-\mathrm{Bil}^{1}$	98.78 (9)

Symmetry code: (i) $2-x, 2-y, 1-z$

Compound (2)

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{SbI}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]} \\
& M_{r}=574.55 \\
& \text { Monoclinic } \\
& P 2_{\mathrm{l}} / n \\
& a=7.92871(11) \AA \\
& b=12.663(2) \AA \\
& c=11.447(3) \AA \\
& \beta=94.116(3)^{\circ} \\
& V=1146.40(3) \AA^{3} \\
& Z=4 \\
& D_{x}=3.329 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured }
\end{aligned}
$$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 197
reflections
$\theta=5-50^{\circ}$
$\mu=10.430 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$
Orange

Data collection
Siemens SMART area detector diffractometer
ω rotation with narrow frame scans
Absorption correction: SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.019, T_{\text {max }}=0.064$
7156 measured reflections

2606 independent reflections 2134 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.46^{\circ}$
$h=-10 \rightarrow 9$
$k=-16 \rightarrow 15$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.057$
$S=0.818$
2606 reflections
82 parameters

$$
\begin{aligned}
& \mathrm{H} \text { atoms: see text } \\
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.022 P)^{2}\right. \\
\quad \\
\quad+3.591 P] \\
\text { where } P=\left[\max \left(F_{o}^{2}, 0\right)\right. \\
\quad \\
\left.\left.\quad+2 F_{c}^{2}\right]\right] / 3
\end{array}
\end{aligned}
$$

References

Carmalt, C. J., Clegg, W., Elsegood, M. R. J., Errington, R. J., Havelock, J., Lightfoot, P., Norman, N. C. \& Scott, A. J. (1996). Inorg. Chem. 35, 3709-3712.
Eveland, J. R. \& Whitmire, K. H. (1996). Inorg. Chim. Acta, 249, 41-46.
Herzog, A., Feng-Quan, L., Roesky, H. W., Demsar, A., Keller, K., Noltemeyer, M. \& Pauer, F. (1994). Organometallics, 13, 12511256.

Krautscheid, V. H. (1994a). Z. Anorg. Allg. Chem. 620, 1559-1564.
Krautscheid, V. H. (1994b). Personal communication.
Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Program for Absorption Correction. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Area-Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sigwarth, B., Weber, U., Zsolnai, L. \& Hutner, G. (1985). Chem. Ber. 118, 3114-3126.

Table 2. Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$ for (2)

Sbl-12	2.7574 (5)	Sbl-O1 ${ }^{\text {i }}$	2.854 (4)
Sbl-ll	2.7610 (5)	Sbl-Ol	3.020 (4)
Sbl-I3	2.7974 (5)	Sbl-13 ${ }^{\text {ii }}$	3.6842 (5)
I2-Sbl-II	94.64 (2)	I3-Sbl-O1	84.37 (8)
I2-Sbl-I3	93.49 (2)	$\mathrm{Ol}{ }^{2}-\mathrm{Sbl}-\mathrm{Ol}$	95.22 (11)
II-Sbl-I3	96.65 (2)	I2-Sbl-I3'	174.02 (2)
12-Sbl-O1'	82.66 (8)	11-Sbl-13"	83.385 (14)
$\mathrm{II}-\mathrm{Sbl}-\mathrm{Ol}^{\text {i }}$	83.58 (8)	I3-Sbl-I3'	81.156 (14)
$13-\mathrm{Sbl}-\mathrm{Ol}^{1}$	176.15 (8)	$\mathrm{O} 1^{\text {i }}-\mathrm{Sbl}-\mathrm{I} 3^{\text {ii }}$	102.68 (8)
$12-\mathrm{Sbl}-\mathrm{O} 1$	82.45 (8)	$\mathrm{Ol}-\mathrm{Sbl}-13^{\text {in }}$	99.58 (7)
$\mathrm{II}-\mathrm{Sbl}-\mathrm{Ol}$	176.99 (8)		

For both data sets, unit-cell dimensions were determined from reflections taken from three sets of 30 frames (at 0.3° steps in ω) each at 30 s exposure for (1) and 20 s for (2). A full hemisphere of reciprocal space was scanned by $0.3^{\circ} \omega$ steps at $\varphi=0,88$ and 180° with the area detector held at $2 \theta=$ -27°. The crystal-to-detector distance was 4.974 cm . Crystal decay was monitored by repeating the initial 50 frames at the end of data collection and analysing the duplicate reflections. No decay was observed in either data set. H atoms were constrained to idealized geometries and assigned isotropic displacement parameters 1.2 times the $U_{\text {iso }}$ value of their attached C atom for aromatics and 1.5 times $U_{\text {iso }}$ for all others.
For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structures: SHELXTLPlus (Sheldrick, 1995); program(s) used to refine structures: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

The authors thank EPSRC for a studentship (MJQ), and Laporte plc and the Royal Society for additional funds.

[^0]Acta Cryst. (1997). C53, 1027-1029

Bis(pyridine- N)(7,8,17,18-tetracyano-5,10,15,20-tetraphenylporphyrinato)nickel(II) Dimethanol Solvate

Hugues Duval, Véronique Bulach, Jean Fischer and Raymond Weiss

Laboratoire de Cristallochimie et Chimie Structurale,

 UA 424, Université Louis Pasteur, Institut Lebel, 4, rue Blaise Pascal, 67070 Strasbourg CEDEX, France. E-mail: fischer@chimie.u-strasbg.fr(Received 16 September 1996; accepted 12 March 1997)

Abstract

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{48} \mathrm{H}_{24} \mathrm{~N}_{8}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right] \cdot 2 \mathrm{CH}_{4} \mathrm{O}$, is a high-spin bis(pyridine)-Nill derivative of an antipodally β-pyrrole-tetracyano-substituted meso-tetraphenylporphyrin. The $\left[\mathrm{Ni}(\mathrm{py})_{2}\left\{\operatorname{tpp}(\mathrm{CN})_{4}\right\}\right]$ molecule $[\mathrm{py}$ is pyridine and $\operatorname{tpp}(\mathrm{CN})_{4}$ is $7,8,17,18$-tetracyano-5,10,15,20tetraphenylporphyrinato] lies on a crystallographic centre of symmetry, but its non-crystallographic symmetry is close to $D_{2 h}$. The core of the $\operatorname{tpp}(\mathrm{CN})_{4}$ porphyrin dianion is essentially planar. The high-spin state of the Ni^{11} cation leads to a lengthening of the $\mathrm{Ni}-\mathrm{N}$ (pyrrole) bond distances relative to those present in the low-spin [$\mathrm{Ni}^{\text {II }} \mathrm{tpp}$] derivative. Moreover, the electron-withdrawing β-pyrrole cyano substituents, which lie in the antipodal pyrrolic rings, cause an increase in the $\mathrm{C} 7-\mathrm{C} 8$ and the antipodal $\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$ bond distances as well as an opening of the $\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 9$ and the antipodal $\mathrm{C} 6^{\prime}-\mathrm{N} 2^{\prime}-\mathrm{C} 9^{\prime}$ bond angles.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1150). Services for accessing these data are described at the back of the journal.

